如何选择大数据应用程序

企业网 中字

但是,云计算对于组织来说并不总是最好的选择。对合规性或安全性要求较高的组织有时会发现他们需要将敏感数据保留在内部部署的数据中心。此外,一些组织已经在现有的本地数据解决方案上进行投资,并且他们发现继续在本地部署数据中心运行大数据应用程序或使用混合方法会更具成本效益。

(2)私有vs开源的大数据应用程序

一些最流行的大数据工具(包括Hadoop生态系统)可以在开源许可下获得。 Forrester公司指出,“2017年,企业将在Hadoop软件和相关服务上投入8亿美元。”

Hadoop和其他开源软件最大的吸引力之一是降低总体拥有成本。尽管专有解决方案需要支付高昂的许可费,并且可能需要昂贵的专用硬件,但Hadoop没有许可费,并且可以在标准的硬件上运行。

然而,企业有时发现很难获得开源的解决方案,以满足他们的需要。他们可能需要购买支持或咨询服务,组织在计算总拥有成本时需要考虑这些费用。

(3)批处理vs流式传输大数据应用程序

最早的大数据解决方案(如Hadoop)只是处理批量数据,但企业越来越多地发现他们希望实时分析数据。这引发了对Spark、Storm、Samza等流媒体解决方案的更多兴趣。

许多分析师表示,即使组织认为他们现在不需要处理流式数据,流媒体功能也可能在不久的将来成为标准操作流程。出于这个原因,许多组织正在向Lambda体系结构迈进,这是一种既能处理实时数据又能批处理数据的数据处理体系结构。

在大数据应用中寻找特性

一旦企业缩小了选项范围,就需要评估其正在考虑的大数据应用程序。以下包括一些最重要的需要考察的因素。

与传统技术集成 - 大多数组织已经在数据管理和分析技术方面进行现有投资。完全替代该技术可能代价高昂并且具有破坏性,因此组织通常会选择寻找可以与现有工具一起使用的解决方案,或者可以增加现有软件。

绩效 - 2017年Talend研究发现,实时分析功能是商业领袖的首要IT优先事项之一。如果要从这些洞察中获益,管理人员和工作人员需要能够及时获取见解。这意味着投资可以提供他们所需速度的技术。

可扩展性 - 大数据存储的规模每天都会变得更大。组织需要快速执行的大数据应用程序,随着数据存储量以指数级增长,这些应用程序可以继续快速执行。这种对可扩展性的需求是基于云计算的大数据应用变得非常流行的主要原因之一。

可用性 - 组织还应该考虑他们打算购买的任何大数据应用程序的“学习曲线”。易于部署、易于配置、界面直观和/或与组织已经使用的工具相似或集成的工具可以提供巨大的价值。

可视化 - BI-Survey.com表示,“针对商业用户的可视化和探索性数据分析(称为数据发现)已经演变成当今市场上最热门的商业智能和分析主题。”在图表中呈现数据可以使人类的大脑更容易发现趋势和异常值,加快识别可操作见解的过程。

灵活性 – 企业如今所需要的大数据可能与其在一两年前的需求大不相同。这就是为什么许多企业选择寻找能够满足各种不同目标的工具,而不是很好地执行单一功能的原因。

安全性 - 这些大数据存储中包含的大部分数据都是敏感信息,这对于竞争对手、国家机构或黑客都是非常有价值的。组织需要确保他们的大数据具有足够的保护,以防止成为头条新闻报道的大量数据泄露事件。这意味着组织需要寻找具有内置安全功能(如加密和强身份验证)的工具,或者寻找与现有安全解决方案集成的工具。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存